
Learning Mixtures of Gaussians Using the DDPM Objective

Forward and Backward Process

                                              

• Gradient Descent on the DDPM Objective learns parameters of 
• mixtures of two Gaussians from random initialization 
• mixtures of K Gaussians from warm initialization 

   (First efficient learning results for diffusion models.)  

• Our proofs use a new connection between score-based methods 
and two other approaches to distribution learning: the 
Expectation-Maximization (EM) algorithm and spectral methods.

TakeawaysDiffusion Models: A Generative Modelling framework

• Backbone of the powerful models such as DALL-E 2, Imagen, 
Stable Diffusion and Dream-Fusion 

• Assuming the existence of an oracle for score estimation, 
several work establishes convergence guarantees under mild 
assumptions on the data distribution [CCL+23, LLT23]

Experiments
Task: Learning mixtures of 
two Gaussians 

Observation:  
• Large noise scale training 

provide warm start of the 
training 

• Only small noise scale 
training does not converge 
to ground-truth parameters
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Forward Corruption Process

 (Distribution at noise )Xt ∼ qt t

                                             

Reverse Generative Process

Forward SDE:         (Ornstein–Uhlenbeck process) dXt = − Xtdt + 2dWt

Reverse SDE:        dX←
t = (X←

t + 2∇ln qT−t(X←
t ) ) dt + 2dWt

Learning the score using score-matching at various noise scales:

Denoising DDPM Objective [HJA20] and sliced score matching [SGSE19] 
are different ways to minimize the objective and equivalent to the score 
matching objective upto a data dependent constant. 

Are there any data distributions under which gradient 
descent provably achieves accurate score estimation?

Mixtures of two Gaussians:  

     

Informal Result: Gradient descent (GD) on the DDPM objective 
with random initialization efficiently learns the parameters of an 
unknown mixture of two spherical Gaussians with 1/poly(dimension)-
separated centers.

q = 0.5%(μ*, I) + 0.5%(−μ*, I)

Mixtures of two Gaussians

Mixtures of K Gaussians

Proof Idea

Large noise scale training: 

• Population GD on DDPM objective  Power method on 
 matrix (without normalization) 

• Convergence of power method in angular distance  Warm 
start for the DDPM training 

≈
I + μ*μ*⊤

⟹

Small noise scale training: 

• Population GD on DDPM objective  Expectation-Maximization 
(EM) algorithm update 

• Convergence of EM update  Convergence of DDPM training 

≈

⟹

Mixtures of K Gaussians with -separated centers 

                   where mean of  component 

Informal Result: When there is a warm start of the centers, gradient 
descent on the DDPM objective learns the parameters of the mixture 
of K Gaussians in polynomial time and sample complexity.

Ω( log( K ))

q = 1
K

K

∑
i=1

%(μ*i , I) μ*i = ith
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Normal distribution)XT ∼ qT ( ≈ (Data distribution) X0 ∼ q0

sT−t = arg min
s

*[∥sT−t(X←
t ) − ∇ln qT−t(X←

t )∥2]

• Connection between Population GD on DDPM objective and EM 
algorithm extends to mixtures of K Gaussians.  

• Known results on local convergence of EM [KC20, SN21] implies the 
learning. 

Paper

Population update   Other terms ] ≈ *[ tanh(μ⊤x)x +
EM Update


